A Comparison of the ROC Curve Estimators
نویسندگان
چکیده
The ROC (Receiver Operating Chracteristic) curves are frequently used for different diagnostic purposes. There are several different approaches how to find the suitable estimate of the ROC curve in binormal model. The effective methods which can be used when the sample sizes are small are still very demanded in different applications. In the paper the binormal model is assumed and the parametric, semiparametric and nonparametric estimators are compared by simulation study. The parametric approach is based on the method of weighted least squares, the semiparametric approach is based on the functional modelling and the nonparametric approach is based on the sample or empirical cumulative distributive function (cdf).
منابع مشابه
Estimation and Comparison of Receiver Operating Characteristic Curves.
The receiver operating characteristic (ROC) curve displays the capacity of a marker or diagnostic test to discriminate between two groups of subjects, cases versus controls. We present a comprehensive suite of Stata commands for performing ROC analysis. Non-parametric, semiparametric and parametric estimators are calculated. Comparisons between curves are based on the area or partial area under...
متن کاملA Semiparametric Approach for the Covariate Specific Roc Curve with Survival Outcome
Abstract: The receiver operating characteristic (ROC) curve has been extended to survival data recently, including the nonparametric approach by Heagerty, Lumley and Pepe (2000) and the semiparametric approach by Heagerty and Zheng (2005) using standard survival analysis techniques based on two different time-dependent ROC curve definitions. However, both approaches do not involve covariates ot...
متن کاملSemiparametric Least Squares Based Estimation of the Receiver Operating Characteristic(ROC) Curve
The receiver operating characteristics (ROC) curve is a standard statistical tool to characterize the accuracy of diagnostic tests when test results are continuous. It provides a complete description of test performance and a meaningful way to compare the performances of different tests. The empirical (nonparametric) ROC curve is the most popular estimator of the ROC curve. Semiparametric estim...
متن کاملSemiparametric estimation of the covariate-specific ROC curve in presence of ignorable verification bias.
Covariate-specific receiver operating characteristic (ROC) curves are often used to evaluate the classification accuracy of a medical diagnostic test or a biomarker, when the accuracy of the test is associated with certain covariates. In many large-scale screening tests, the gold standard is subject to missingness due to high cost or harmfulness to the patient. In this article, we propose a sem...
متن کاملComparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models
Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...
متن کامل